ENTIERS, SOMMES, RÉCURRENCES

I. Généralités sur les entiers

1. Vocabulaire

Définition 4.1

• On note N l'ensemble des entiers naturels, c'est à dire les entiers positifs ou nuls.

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$

• On note $\mathbb Z$ l'ensemble des entiers relatifs, c'est à dire les entiers positifs et négatifs

$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$

Tout entier naturel est aussi un entier relatif, on a donc $\mathbb{N} \subset \mathbb{Z}$.

Propriété 4.1

Le produit ou la somme de deux entiers naturels est un entier naturel. Le produit, la somme ou la différence de deux entiers relatifs est un entier relatif

Propriété 4.2 (Axiomes de Peano, admis)

- 1. 0 est un entier naturel. ($\mathbb{N} \neq \emptyset$)
- 2. Tout entier naturel n a un unique successeur, noté S(n) ($\exists S : \mathbb{N} \to \mathbb{N}$)
- 3. Aucun entier naturel n'a 0 pour successeur. $(\forall n \in \mathbb{N}, S(n) \neq 0)$
- 4. Deux entiers naturels ayant même successeur sont égaux. (S est injective)
- 5. Si un ensemble d'entiers naturels contient 0 et contient le successeur de chacun de ses éléments, alors cet ensemble est égal à $\mathbb N$:

$$[(E \subset \mathbb{N}) \text{ et } (0 \in E) \text{ et } (\forall n \in E, S(n) \in E)] \Longrightarrow E = \mathbb{N}$$

Le 5^{ème} axiome de Peano est l'**axiome de récurrence**.

Définition 4.2

Un nombre entier $n \in \mathbb{Z}$ est...

- ...pair s'il existe $k \in \mathbb{Z}$, n = 2k
- ...impair s'il existe $k \in \mathbb{Z}$, n = 2k + 1
- ...divisible par $m \in \mathbb{Z}$ s'il existe $k \in \mathbb{Z}$, n = km
- ...multiple de $m \in \mathbb{Z}$ s'il est divisible par m
- ...premier si $n \in \mathbb{N}$ et si n est divisible par exactement 2 entiers naturels : 1 et n.

2. Ensembles dénombrables

Définition 4.3

Si un ensemble infini I peut être mis en bijection avec \mathbb{N} , on dit qu'il est **dénombrable**. Dans le cas contraire on dit que I est **indénombrable**.

Exemple 4.1

On admet les résultats suivants :

• \mathbb{N}^* est dénombrable car l'application $\mathbb{N}^* \mapsto \mathbb{N}$, $x \mapsto x - 1$ est une bijection.

- \mathbb{Z} est dénombrable car l'application $n \mapsto \begin{cases} \frac{n}{2} & \text{si } n \text{ est pair} \\ -\frac{n+1}{2} & \text{si } n \text{ est impair} \end{cases}$ est une bijection de \mathbb{N} vers \mathbb{Z} (exercice)
- Q est aussi dénombrable (plus difficile)
- R est indénombrable (admis, chercher « Argument de la diagonale de Cantor » pour une preuve accessible).

Définition 4.4

Une **famille** d'éléments de E indexée par un ensemble I est une application de I vers E qui à tout élément $i \in I$ associe un élément $x_i \in E$, on note alors cette famille $(x_i)_{i \in I}$. On dit que cette famille est **finie** (respectivement **dénombrable**) si I est fini (respectivement dénombrable).

En pratique on aura toujours $I \subset \mathbb{N}$ ou $I \subset \mathbb{Z}$, donc I fini ou dénombrable.

Exemples 4.2

- Un *n*-uplet ($x_1, x_2, ..., x_n$) d'éléments d'un ensemble *E* est une famille d'éléments de *E* indexée par $\{1, ..., n\}$. C'est une famille finie.
- Une suite numérique est une famille d'éléments de ℝ indexée par N. C'est une famille infinie dénombrable.

II. Symboles somme Σ et produit Π

Si a et b sont deux entiers relatifs avec $a \le b$, on note [a, b] l'ensemble des entiers compris entre a et b

1. Somme

Définition 4.5

Soient a et b deux entiers avec $a \le b$. Soit I = [a, b] et soit $(u_a, u_{a+1}, u_{a+2}, \dots, u_b) = (u_i)_{i \in I}$ une famille de réels. La notation $\sum_{i=a}^b u_i$ signifie $u_a + u_{a+1} + u_{a+2} + \dots + u_b$. On peut noter :

$$\sum_{i=a}^{b} u_i = \sum_{i \in I} u_i = u_a + u_{a+1} + \dots + u_b$$

et la notation $\sum_{i \in I}$ se généralise si I est un ensemble fini d'entiers quelconque.

Par convention une somme vide est nulle : si $I = \emptyset$ on a $\sum_{i \in I} u_i = 0$.

Dans l'expression $\sum_{i=a}^b u_i$, i s'appelle l'**indice de sommation**. C'est une variable muette, c'est à dire que l'on peut changer son nom sans changer le sens de l'expression : $\sum_{i=a}^b u_i = \sum_{k=a}^b u_k = \sum_{\varnothing=a}^b u_\varnothing$

Exemple 4.3

•
$$\sum_{k=1}^{5} k = \sum_{j=1}^{5} j = 1 + 2 + 3 + 4 + 5 = 15$$

•
$$\sum_{i=0}^{3} i^2 = 0^2 + 1^2 + 2^2 + 3^2 = 14$$

On peut préciser sous le symbole somme l'ensemble parcouru par l'indice de sommation, comme dans l'exemple suivant :

Exemple 4.4

$$\sum_{\substack{1 \le k \le 100 \\ k \text{ est pair}}} k = 2 + 4 + 6 + \dots + 100 = \sum_{i=0}^{50} 2i = 2 \times \frac{50 \times 51}{2} = 2550$$

On peut d'ores et déjà retenir les formules suivantes dont la démonstration est rappelée plus loin

Proposition 4.3

Pour tout entier $n \ge 1$:

$$\boxed{\sum_{k=1}^{n} k = \frac{n(n+1)}{2}} \quad \text{et} \quad \boxed{\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}}$$

Pour tout réel $q \neq 1$ et tout entiers naturels n et p avec $p \leq n$:

$$\sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q} = \frac{q^{n+1} - 1}{q - 1} \quad \text{et} \quad \left[\sum_{k=p}^{n} q^k = \frac{q^{n+1} - q^p}{q - 1} \right]$$

2. Produit

Définition 4.6

Le symbole \prod s'utilise exactement comme le symbole \sum mais pour un produit, ainsi si I = [a, b] avec $a, b \in \mathbb{Z}$ et $a \le b$, et si $(u_a, u_{a+1}, u_{a+2}, \dots, u_b) = (u_i)_{i \in I}$ est une famille de réels on note :

$$\prod_{i=a}^b u_i = \prod_{i \in I} u_i = u_a \times u_{a+1} \times \cdots \times u_b$$

et la notation $\prod_{i \in I}$ se généralise si I est un ensemble fini d'entiers quelconque.

Par convention un produit vide vaut 1 : si $I = \emptyset$ on a $\prod_{i \in I} u_i = 1$.

Exemple 4.5

- $\prod_{k=3}^{6} (7-k) = (7-3) \times (7-4) \times (7-5) \times (7-6) = 4 \times 3 \times 2 \times 1 = 24$
- Par définition, $n! = 1 \times 2 \times 3 \times \cdots \times n$. On peut donc écrire

$$n! = \prod_{k=1}^{n} k = \prod_{1 \le k \le n} k$$

Exemple 4.6

Les propriétés algébriques de l'exponentielle et du logarithme peuvent permettre d'exprimer une somme comme un produit et inversement (sous réserve d'existence). Si $(u_k)_{a \le k \le b}$ est une famille finie de réels, on a :

$$\exp\left(\sum_{k=a}^b u_k\right) = \prod_{k=a}^b \exp(u_k) \quad \text{et} \quad \ln\left(\prod_{k=a}^b u_k\right) = \sum_{k=a}^b \ln(u_k)$$

3. Quelques propriétés

Dans toute cette partie, a, b, c désignent des entiers relatifs et (u_k) et (v_k) désignent des familles de réels.

Propriété 4.4 (Relation de Chasles)

$$\sum_{k=a}^{c} u_k = \sum_{k=a}^{b} u_k + \sum_{k=b+1}^{c} u_k$$

$$\prod_{k=a}^{c} u_k = \prod_{k=a}^{b} u_k \times \prod_{k=b+1}^{c} u_k$$

→ Exercice de cours nº 1.

Propriété 4.5 (Linéarité de la somme)

$$\sum_{k=a}^b (\lambda u_k + \mu v_k) = \lambda \sum_{k=a}^b u_k + \mu \sum_{k=a}^b v_k$$

Exemple 4.7

Calculer $\sum_{k=1}^{n} (2k+3)^2$

$$\sum_{k=1}^{n} (2k+3)^2 = \sum_{k=1}^{n} 4k^2 + 12k + 9$$

$$= 4 \sum_{k=1}^{n} k^2 + 12 \sum_{k=1}^{n} k + 9 \sum_{k=1}^{n} 1$$

$$= 4 \times \frac{n(n+1)(2n+1)}{6} + 12 \times \frac{n(n+1)}{2} + 9n$$

$$= \frac{4n(n+1)(2n+1) + 36n(n+1) + 54n}{6}$$

$$= \frac{8n^3 + 48n^2 + 94n}{6}$$

Propriété 4.6 (Changement d'indice) —

En posant le changement de variable j = k + c, on a

$$\sum_{k=a}^b u_k = \sum_{j=a+c}^{b+c} u_{j-c} \quad \text{et} \quad \prod_{k=a}^b u_k = \prod_{j=a+c}^{b+c} u_{j-c}$$

Exemple 4.8

La somme $\sum_{k=185}^{300} 2^{k-185}$ s'écrit de façon développée :

$$\sum_{k=185}^{300} 2^{k-185} = 2^0 + 2^1 + 2^2 + 2^3 + \dots + 2^{115}$$

Il y a donc une façon plus simple de l'écrire : il suffit de faire le changement d'indice i=k-185 pour pouvoir écrire

$$\sum_{k=185}^{300} 2^{k-185} = \sum_{i=0}^{115} 2^i = \frac{2^{116} - 1}{2 - 1} = 2^{116} - 1$$

Remarque

Pour vérifier que l'on ne s'est pas trompé dans un changement d'indice, penser à toujours vérifier le premier et le dernier terme de la somme.

 \rightarrow Exercice de cours nº 2.

Si a < b l'indice de sommation va de a vers b, mais il peut arriver de vouloir écrire la somme (ou le produit) dans l'autre sens.

Propriété 4.7 (Changement de sens)

$$\sum_{k=a}^{b} u_k = \sum_{j=a}^{b} u_{b+a-j} \quad \text{et} \quad \prod_{k=a}^{b} u_k = \prod_{j=a}^{b} u_{b+a-j}$$

Remarque

En pratique, on pose le changement de variable sans retenir l'égalité ci-dessus et on vérifie bien les valeurs aux bornes.

→ Exercice de cours nº 3.

Proposition 4.8 (Sommes téléscopiques) —

$$\sum_{k=a}^{b} (u_{k+1} - u_k) = u_{b+1} - u_a$$

→ Exercice de cours nº 4.

4. Une application: formule de factorisation

Proposition 4.9

Soient $(x, y) \in \mathbb{R}^2$ et $n \in \mathbb{N}^*$, alors

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{k} y^{n-k-1}$$

Remarque

Sous forme développée : $x^n - y^n = (x - y)(y^{n-1} + xy^{n-2} + x^2y^{n-3} + \dots + x^{n-2}y + x^{n-1})$

Remarque

Le cas n = 2 est l'identité remarquable $x^2 - y^2 = (x - y)(x + y)$ et le cas y = 1 donne la formule $\sum_{k=0}^{n-1} x^k = \frac{x^n - 1}{x - 1}$

→ Exercice de cours nº 5.

5. Somme double

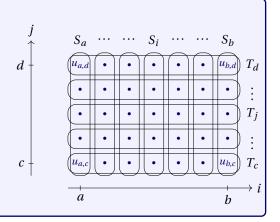
Propriété 4.10 (Somme sur un rectangle)

Soit $I=[\![a,b]\!]$ et $J=[\![c,d]\!]$ deux parties finies de $\mathbb N$ et soit $(u_{i,j})_{(i,j)\in I\times J}$ une famille de réels. Alors

$$\sum_{i=a}^{b} \left(\sum_{j=c}^{d} u_{i,j} \right) = \sum_{i=a}^{b} S_i = \sum_{j=c}^{d} T_j = \sum_{j=c}^{d} \left(\sum_{i=a}^{b} u_{i,j} \right)$$

avec $S_i = \sum_{j=c}^d u_{i,j}$ et $T_j = \sum_{i=a}^b u_{i,j}$ On note aussi cette somme

$$\sum_{i=a}^{b} \sum_{j=c}^{d} u_{i,j} = \sum_{(i,j) \in I \times J} u_{i,j} = \sum_{i \in I} \sum_{j \in J} u_{i,j}$$



Exemple 4.9

Une somme double peut être exprimée avec un seul symbole somme :

$$\sum_{1 \le i,j \le 5} ij = \sum_{i=1}^{5} \sum_{j=1}^{5} ij$$

$$= \sum_{i=1}^{5} \left(i \times \sum_{j=1}^{5} j \right)$$

$$= \sum_{i=1}^{5} i \frac{5 \times 6}{2}$$

$$= 15 \times \sum_{i=1}^{5} i$$

$$= 15 \times \frac{5 \times 6}{2}$$

$$= 225$$

→ Exercice de cours nº 6.

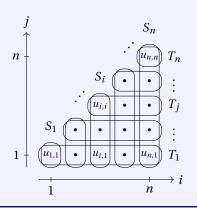
Dans la somme double $\sum_{i=a}^{b} \sum_{j=c}^{d}$, on peut considérer que (i,j) parcours toutes les coordonnées entières dans le rectangle $[a,b] \times [c,d]$ du plan. Il peut arriver que les indices d'une somme double parcourent un triangle au lieu d'un rectangle :

Propriété 4.11 (Somme sur un triangle)

Soit n un entier strictement positif et $(u_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$ une famille de réels. Alors

$$\sum_{i=1}^{n} \sum_{j=1}^{i} u_{i,j} = \sum_{i=1}^{n} S_i = \sum_{j=i}^{n} T_j = \sum_{j=1}^{n} \sum_{i=j}^{n} u_{i,j}$$

avec $S_i = \sum_{j=1}^i u_{i,j}$ et $T_j = \sum_{i=j}^n u_{i,j}$



→ Exercice de cours nº 7.

Propriété 4.12

Si $(a_i)_{i \in I}$ et $(b_j)_{j \in J}$ sont deux familles finies de réels, alors

$$\left(\sum_{i \in I} a_i\right) \times \left(\sum_{j \in J} b_j\right) = \sum_{i \in I} \sum_{j \in J} a_i b_j$$

→ Exercice de cours nº 8.

Remarque

Attention, on peut être tenté d'écrire par exemple $\sum_{k=1}^{n} k 2^k = \sum_{k=1}^{n} k \sum_{k=1}^{n} 2^k$ mais cette égalité est fausse.

En général on a $(\sum_{i=a}^b a_i) \times (\sum_{i=a}^b b_i) \neq \sum_{i=a}^b a_i b_i$

Un produit de sommes n'est pas égal à la somme des produits (sinon on aurait par exemple $(a+b)^2 = a^2 + b^2...$) La propriété précédente n'est vraie que si la somme porte sur 2 indices **distincts** et que le terme général a_ib_j est un produit d'un terme a_i **qui ne dépend que de** i et d'un terme b_j **qui ne dépend que de** j.

III. Principe de récurrence

1. Énoncé

Proposition 4.13 (Principe de récurrence)

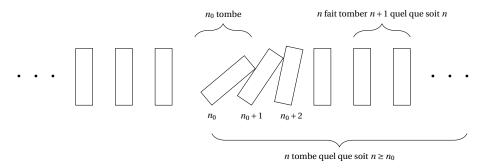
On considère une propriété $\mathcal{P}(n)$ qui dépend d'un entier n. Supposons que les deux conditions suivantes sont remplies :

- Il existe un entier n_0 tel que $\mathcal{P}(n_0)$ est vraie
- Pour tout $n \ge n_0$, si $\mathcal{P}(n)$ est vraie alors $\mathcal{P}(n+1)$ est vraie.

Alors $\mathcal{P}(n)$ est vraie quel que soit $n \geq n_0$.

Remarque

Le principe de récurrence fonctionne comme un jeu de dominos : si chaque domino fait tomber le suivant, et que le domino n_0 tombe, alors tous les dominos après le domino n_0 tomberont.



Le raisonnement par récurrence se rédige donc en trois étapes :

- **Initialisation** : On démontre que $\mathcal{P}(n_0)$ est vraie.
- **Hérédité** : On suppose que $\mathcal{P}(n)$ est vraie pour un entier $n \ge n_0$ quelconque et on montre que cela implique que $\mathcal{P}(n+1)$ est vraie.

On peut écrire

- « Supposons que $\mathcal{P}(n)$ soit vraie pour un certain rang $n \in \mathbb{N}$. Montrons que $\mathcal{P}(n+1)$ est vraie...»
- « Supposons qu'il existe $n \in \mathbb{N}$ tel que $\mathcal{P}(n)$ soit vrai. Montrons que $\mathcal{P}(n+1)$ est vraie...»
- etc.
- Conclusion : Par principe de récurrence, on en conclut que $\mathcal{P}(n)$ est vraie pour tout $n \geq n_0$.

Remarque

L'initialisation se fait souvent pour $n_0 = 0$ ou $n_0 = 1$ mais cela peut être un autre entier selon le contexte.

- → Exercice de cours nº 9.
- → Exercice de cours nº 10.
- → Exercice de cours nº 11.

Exemple 4.10

Cet exemple illustre pourquoi il faut impérativement vérifier l'initialisation!

Notons $\mathcal{P}(n)$: « $7^n + 3$ est un multiple de 6»

Cette propriété est héréditaire : supposons que $\mathcal{P}(n)$ est vraie pour un certain entier n, alors il existe $k \in \mathbb{N}$ tel que $7^n + 3 = 6k$ donc $7^{n+1} + 21 = 42k$ et finalement $7^{n+1} + 3 = 42k - 18 = 6(7k - 3)$. Ainsi, $7^{n+1} + 3$ est un multiple de 6 donc $\mathcal{P}(n + 1)$ est vraie.

Pour tout $n \in \mathbb{N}$, $\mathcal{P}(n) \Rightarrow \mathcal{P}(n+1)$, mais pour tout $n \in \mathbb{N}$, $\mathcal{P}(n)$ est faux!

- → Exercice de cours nº 12.
- → Exercice de cours nº 13.

2. Récurrence double, récurrence forte

Deux variantes du principe de récurrence dont l'hérédité ne repose pas seulement sur le rang précédent mais sur les **deux** rangs précédents (récurrence double), ou bien sur l'ensemble de tous les rangs précédents (récurrence forte)

Proposition 4.14 (Principe de récurrence double)

On considère une propriété $\mathcal{P}(n)$ qui dépend d'un entier n. Supposons que les deux conditions suivantes sont remplies :

- Il existe un entier n_0 tel que $\mathcal{P}(n_0)$ et $\mathcal{P}(n_0+1)$ sont vraies.
- Pour tout $n \ge n_0$, si $\mathcal{P}(n)$ et $\mathcal{P}(n+1)$ sont vraies, alors $\mathcal{P}(n+2)$ est vraie.

Alors $\mathcal{P}(n)$ est vraie quel que soit $n \ge n_0$.

Le raisonnement par récurrence double se rédige en trois étapes :

- **Initialisation**: On démontre que $\mathcal{P}(n_0)$ et $\mathcal{P}(n_0+1)$ sont vraies.
- **Hérédité** : On suppose que $\mathcal{P}(n)$ et $\mathcal{P}(n+1)$ sont vraies pour un entier $n \ge n_0$ quelconque et on montre que cela implique que $\mathcal{P}(n+2)$ est vraie.
- Conclusion : Par principe de récurrence double, on en conclut que $\mathcal{P}(n)$ est vraie pour tout $n \ge n_0$.
- → Exercice de cours nº 14.
- → Exercice de cours nº 15.

Proposition 4.15 (Principe de récurrence forte) -

On considère une propriété $\mathcal{P}(n)$ qui dépend d'un entier n. Supposons que les deux conditions suivantes sont remplies :

- Il existe un entier n_0 tel que $\mathcal{P}(n_0)$ est vraie
- Pour tout $n \ge n_0$, si pour tout entier k, $n_0 \le k \le n$, $\mathcal{P}(k)$ est vraie alors $\mathcal{P}(n+1)$ est vraie.

Alors $\mathcal{P}(n)$ est vraie quel que soit $n \geq n_0$.

Le raisonnement par récurrence forte se rédige en trois étapes :

• **Initialisation** : On démontre que $\mathcal{P}(n_0)$ est vraie.

- **Hérédité** : On suppose que $\mathcal{P}(n_0)$, $\mathcal{P}(n_0+1)$,..., $\mathcal{P}(n)$ sont vraies pour un entier $n \ge n_0$ quelconque et on montre que cela implique que $\mathcal{P}(n+1)$ est vraie.
- Conclusion : Par principe de récurrence forte, on en conclut que $\mathcal{P}(n)$ est vraie pour tout $n \ge n_0$.

Application de la récurrence forte : un théorème sur les nombres premiers

Théorème 4.16

Tout entier $n \ge 2$ admet un diviseur premier.

→ Exercice de cours nº 16.

Remarque

Dans l'exercice précédent la propriété n'est pas vraie pour le rang n=0, on initialise donc à n=1.

IV. Formule du binôme de Newton

1. Propriétés des coefficients binomiaux

On rappelle que pour tout $n \in \mathbb{N}$ et tout $k \in [0, n]$, $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.

Propriété 4.17

Soit $n \in \mathbb{N}$ et $k \in [0, n]$. Alors

$$\binom{n}{0} = \binom{n}{n} = 1 \quad \text{et} \quad \binom{n}{k} = \binom{n}{n-k}$$

Remarque

Si E est un ensemble à n éléments, il y a une seule partie de E à 0 éléments (l'ensemble vide) et une seule partie de E à n éléments (E lui-même).

De plus, chaque partie de E est entièrement déterminé par son complémentaire dans E: choisir tous les éléments de cette partie revient à choisir tous les éléments qui ne sont pas dans cette partie. Choisir le complémentaire d'une partie de E à k éléments revient à choisir une partie de k à k éléments revient à choisir une partie de k à k éléments, d'où l'égalité k choisir une partie de k à k éléments, d'où l'égalité k choisir une partie de k à k éléments, d'où l'égalité k choisir une partie de k à k éléments revient à choisir une partie de k à k éléments revient à choisir une partie de k à k éléments revient à choisir une partie de k à k éléments revient à choisir une partie de k à k éléments revient à choisir une partie de k à k éléments revient à choisir une partie de k à k éléments revient à choisir une partie de k à k éléments revient à choisir une partie de k à k éléments revient à choisir une partie de k à k éléments revient à choisir une partie de k à k éléments revient à choisir une partie de k à k éléments revient à choisir une partie de k à k éléments revient à choisir une partie de k à k éléments revient à choisir une partie de k à k éléments revient à choisir une partie de k à k éléments revient à choisir une partie de k à k éléments revient à choisir une partie de k à k éléments revient à k èléments revient à

Lemme 4.18 (Formule de Pascal)

Soit $n \in \mathbb{N}$. On a, pour tout $k \in [0, n]$,

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$

Une conséquence de ce Lemme est que l'on peut retrouver la valeur des coefficients binomiaux à l'aide du triangle de Pascal et de la relation :

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}, \forall n \in \mathbb{N}, \forall k \in \mathbb{N}, 0 \le k \le n$$

n k	0	1	2	3	4	5	6
0	$\binom{0}{0} = 1$						
1	$\binom{1}{0} = 1$	$\binom{1}{1} = 1$					
2	$\binom{2}{0} = 1$	$\binom{2}{1} = 2$	$\binom{2}{2} = 1$				
3	$\binom{3}{0} = 1$	$\binom{3}{1} = 3$	$\binom{3}{2} = 3$	$\binom{3}{3} = 1$			
4	$\binom{4}{0} = 1$	$\binom{4}{1} = 4$	$\binom{4}{2} = 6$	$\binom{4}{3} = 4$	$\binom{4}{4} = 1$		
5	$\binom{5}{1} = 1$	$\binom{5}{1} = 5$	$\binom{5}{2} = 10$	$\binom{5}{3} = 10$	$\binom{5}{4} = 5$	$\binom{5}{5} = 1$	
6	$\binom{6}{0} = 1$	$\binom{6}{1} = 6$	$\binom{6}{2} = 15$	$\binom{6}{3} = 20$	$\binom{6}{4} = 15$	$\binom{6}{5} = 6$	$\binom{6}{6} = 1$

Le triangle de Pascal

2. Formule du binôme

Proposition 4.19 (Formule du binôme de Newton)

Soit $(x, y) \in \mathbb{R}^2$ un couple de réels, alors pour tout $n \in \mathbb{N}$ on a

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

Remarque

Cette formule fournit une preuve plus simple de la proposition 3 du chapitre 3 :

$$2^{n} = (1+1)^{n}$$

$$= \sum_{k=0}^{n} \binom{n}{k} 1^{k} 1^{n-k}$$

$$= \sum_{k=0}^{n} \binom{n}{k}$$

Remarque

En utilisant l'égalité $\binom{n}{k} = \binom{n}{n-k}$ et le changement de variable k' = n-k on remarque que

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k} = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

Plus simplement, cette égalité est une conséquence du fait que $(x + y)^n = (y + x)^n$.

- → Exercice de cours nº 17.
- → Exercice de cours nº 18.

Exercices de cours

Exercice 1 -

Soit $q \ne 1$ un réel. On admet que pour tout entier naturel n, on a : $\sum_{k=0}^{n} q^k = \frac{q^{n+1}-1}{q-1}$.

Montrer que pour tout couple d'entiers naturels (n, p) avec $p \le n$ on a :

$$\sum_{k=p}^{n} q^{k} = \frac{q^{n+1} - q^{p}}{q - 1}$$

Exercice 2 -

Soit $n \ge 3$ un entier. Calculer $\sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+2} \right)$.

Exercice 3 -

Calculer les sommes suivantes :

1.
$$\sum_{k=5}^{20} 2^{20-k}$$

$$2. \sum_{k=-10}^{20} |k-5|$$

$$3. \sum_{k=1}^{n-1} \ln \left(\frac{k}{n-k} \right)$$

Déterminer deux réels α et β tels que pour tout $n \in \mathbb{N}$, $\frac{1}{n(n+1)} = \frac{\alpha}{n} + \frac{\beta}{n+1}$ et en déduire la valeur de la somme $\sum_{k=1}^{n} \frac{1}{k(k+1)}$

Exercice 5

Soient $n, m \in \mathbb{N}$. Justifier que $2025^n - 2025^m$ est divisible par 2024.

Exercice 6

Calculer $\sum_{\substack{1 \leq i \leq 4\\1 \leq j \leq 3}} \max(i,j)$ où $\max(i,j)$ désigne la valeur maximale entre i et j.

Exercice 7

Calculer $\sum_{i=1}^{n} \sum_{j=i}^{n} \frac{i}{j}$

Exercice 8

Calculer $\sum_{0 \le i, j \le 10} 2^{i+j}$

- Exercice 9

On considère la suite u définie par $u_0 = 1$ et $u_{n+1} = u_n + 2n + 1$

- 1. Montrer par récurrence que pour tout $n \in \mathbb{N}$ on a $u_n \ge n^2$
- 2. En déduire la limite de la suite (u_n)

Exercice 10

Soit (u_n) la suite définie par $u_0 = 50$ et $u_{n+1} = 0.8u_n + 20$.

1. Montrer par récurrence que pour tout $n \in \mathbb{N}$, $0 \le u_n \le 100$

- 2. En déduire les variations de la suite u_n
- 3. En déduire que (u_n) converge vers une limite finie ℓ .

Exercice 11

Montrer par récurrence que pour tout $n \in \mathbb{N}$, $4^n + 2$ est un multiple de 3.

— Exercice 12 ——

Montrer par récurrence que pour tout $n \in \mathbb{N}^*$, on a $1+2+\cdots+n=\frac{n(n+1)}{2}$

Exercice 13

Montrer par récurrence que pour tout réel $q \ne 1$ et tout entier $n \ge 0$, on a $1 + q + q^2 + \dots + q^n = \frac{q^{n+1} - 1}{q - 1}$

Exercice 14 -

Soit (u_n) la suite définie par

$$u_0 = 2$$
, $u_1 = 12$, $u_{n+2} = 12u_{n+1} - 35u_n$

Montrer que pour tout $n \in \mathbb{N}$ on a $u_n = 5^n + 7^n$

— Exercice 15 -

La suite de Fibonacci (F_n) est une suite récurrente d'ordre 2 définie par

$$F_0 = 0$$
, $F_1 = 1$ $\forall n \ge 0$, $F_{n+2} = F_{n+1} + F_n$

Montrer que pour tout $n \in \mathbb{N}$, $F_n < \left(\frac{5}{3}\right)^n$

_____ Exercice 16 —

On considère la suite définie par $u_0 = 1$ et $u_{n+1} = \sum_{k=0}^{n} u_k$. Montrer que pour tout $n \ge 1$, $u_n = 2^{n-1}$.

------ Exercice 17 -

Soit $x \in \mathbb{R}$. Calculer $\sum_{k=0}^{n} \binom{n}{k} e^{kx}$

_____ Exercice 18 -

Montrer que pour tout entier $n \in \mathbb{N}$, $(1 + \sqrt{2})^n + (1 - \sqrt{2})^n$ est un entier.

